Classification Model Evaluation (358)
Stapor, Katarzyna, et al. "How to design the fair experimental classifier evaluation." Applied Soft Computing 104 (2021): 107219.
Multi-Label Learning (056)
Eva Gibaja and Sebastián Ventura. 2015. A Tutorial on Multilabel Learning. ACM Comput. Surv. 47, 3, Article 52 (April 2015), 38 pages. https://doi.org/10.1145/2716262
Unsupervised Learning (086)
Saxena, Amit, et al. "A review of clustering techniques and developments." Neurocomputing 267 (2017): 664-681.
Semi-Supervised Learning (100)
Pereira-Santos, Davi, Ricardo Bastos Cavalcante Prudêncio, and André CPLF de Carvalho. "Empirical investigation of active learning strategies." Neurocomputing 326 (2019): 15-27.
van Engelen, J. E., & Hoos, H. H. (2019). A survey on semi-supervised learning. In Machine Learning (Vol. 109, Issue 2, pp. 373–440). Springer Science and Business Media LLC. https://doi.org/10.1007/s10994-019-05855-6
Computer Vision (509)
Zhao, X., Wang, L., Zhang, Y. et al. A review of convolutional neural networks in computer vision. Artif Intell Rev 57, 99 (2024). https://doi.org/10.1007/s10462-024-10721-6
Natural Language Processing (953)
Khurana, Diksha, et al. "Natural language processing: state of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.
Learning from Graphs (111)
Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.
Time-Series (193)
Middlehurst, Matthew, Patrick Schäfer, and Anthony Bagnall. "Bake off redux: a review and experimental evaluation of recent time series classification algorithms." Data Mining and Knowledge Discovery (2024): 1-74.
XAI: Model Explainability (326)
Schwalbe, G., Finzel, B. A comprehensive taxonomy for explainable artificial intelligence: a systematic survey of surveys on methods and concepts. Data Min Knowl Disc 38, 3043–3101 (2024). https://doi.org/10.1007/s10618-022-00867-8
Multi-modal/Multi-view Data (385)
Baltrušaitis, Tadas, Chaitanya Ahuja, and Louis-Philippe Morency. "Multimodal machine learning: A survey and taxonomy." IEEE transactions on pattern analysis and machine intelligence 41.2 (2018): 423-443.
Data Streams: learning under concept drift (340)
Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M. (2017). Ensemble learning for data stream analysis: A survey. In Information Fusion (Vol. 37, pp. 132–156). Elsevier BV. https://doi.org/10.1016/j.inffus.2017.02.004
Brzezinski, D., Minku, L.L., Pewinski, T. et al. The impact of data difficulty factors on classification of imbalanced and concept drifting data streams. Knowl Inf Syst 63, 1429–1469 (2021). https://doi.org/10.1007/s10115-021-01560-w
Open Set Recognition (176)
Geng, Chuanxing, Sheng-jun Huang, and Songcan Chen. "Recent advances in open set recognition: A survey." IEEE transactions on pattern analysis and machine intelligence 43.10 (2020): 3614-3631.
Continual Learning (356)
M. De Lange et al., "A Continual Learning Survey: Defying Forgetting in Classification Tasks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3366-3385, 1 July 2022, doi: 10.1109/TPAMI.2021.3057446.
Multi-task Learning (333)
Yu Zhang, Qiang Yang, An overview of multi-task learning, National Science Review, Volume 5, Issue 1, January 2018, Pages 30–43, https://doi.org/10.1093/nsr/nwx105
N-shot Learning (328)
Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. 2020. Generalizing from a Few Examples: A Survey on Few-shot Learning. ACM Comput. Surv. 53, 3, Article 63 (May 2021), 34 pages. https://doi.org/10.1145/3386252
Model Unlearning (327)
Nguyen, T. T., Huynh, T. T., Ren, Z., Nguyen, P. L., Liew, A. W. C., Yin, H., & Nguyen, Q. V. H. (2022). A survey of machine unlearning. arXiv preprint arXiv:2209.02299.